Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods.